Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42225201
(http://iopscience.iop.org/1751-8121/42/22/225201)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.154
The article was downloaded on 03/06/2010 at 07:51

Please note that terms and conditions apply.

# Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations 

Dinh T Tran, Peter H van der Kamp and G R W Quispel<br>Department of Mathematics, La Trobe University, Victoria 3086, Australia<br>E-mail: td2tran@students.latrobe.edu.au

Received 22 December 2008, in final form 22 December 2008
Published 8 May 2009
Online at stacks.iop.org/JPhysA/42/225201


#### Abstract

We give a method to calculate closed-form expressions in terms of multi-sums of products for integrals of ordinary difference equations which are obtained as traveling wave reductions of integrable partial difference equations. Important ingredients are the staircase method, a non-commutative Vieta formula and certain splittings of the Lax matrices. The method is applied to all equations of the Adler-Bobenko-Suris classification, with the exception of $Q_{4}$.


PACS number: 02.30.Ik

## 1. Introduction

Two main classes of discrete integrable systems that may be distinguished are ordinary difference equations ( $\mathrm{O} \Delta \mathrm{Es}$ ) and partial difference equations ( $\mathrm{P} \Delta \mathrm{Es}$ ). By imposing periodic initial conditions, a $\mathrm{P} \Delta \mathrm{E}$ reduces to an $\mathrm{O} \Delta \mathrm{E}$. The staircase method which was introduced in $[7,8]$ provides us with a tool to construct integrals of $\mathrm{O} \Delta \mathrm{Es}$, or mappings, derived as reductions of integrable $\mathrm{P} \Delta \mathrm{Es}$. These integrals are obtained by expanding the trace of a monodromy matrix in powers of the spectral parameter.

Recently in [6], elegant and succinct formulae for integrals of sine-Gordon and modified Korteweg-de Vries (mKdV) maps have been given for the first time. The integrals are expressed in terms of multi-sums of products, $\Theta$, which are defined in section 2. These multi-sums of products were discovered by inspection and proved by induction. Properties of these multi-sums of products were used to prove the invariance of the integrals independently of the staircase method and make it possible to prove functional independence and involutivity of the integrals directly.

In a recent paper by Adler, Bobenko and Suris (ABS), multi-linear equations on quadgraphs are classified with respect to consistency around the cube [1]. It is also known that for $\mathrm{P} \Delta \mathrm{Es}$ on quad-graphs which satisfy the consistency property, we can obtain a Lax pair algorithmically [2, 3]. Hence, the staircase method can be applied to obtain integrals of traveling wave reductions of the equations in the ABS list.

Some questions arise here: is it possible to give similar explicit expressions for these integrals as was done for mKdV and sine-Gordon? If so, is there any method to obtain closedform expressions for integrals directly, rather than using inspection and induction? This paper answers both these questions in the affirmative. Based on a non-commutative Vieta formula, and certain splittings of the Lax matrices, we explain how multi-sums of products emerge and give a method to actually derive closed-form expressions for the integrals.

## 2. Outline of this paper

In this paper, we restrict ourselves to the so-called $\left(1, z_{2}\right)$ traveling wave reductions $\left(z_{2} \in \mathbb{N}^{+}\right)$ which we now explain. With $(l, m) \in \mathbb{Z} \times \mathbb{Z}$, we consider a two-dimensional $\mathrm{P} \Delta \mathrm{E}$ with field variable $v$,

$$
\begin{equation*}
f\left(v_{l, m}, v_{l+1, m}, v_{l, m+1}, v_{l+1, m+1} ; \alpha\right)=0 \tag{1}
\end{equation*}
$$

and parameters $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$. Now we introduce a reduction $v_{l, m}=v_{n}$, where $n=l+m z_{2}$. Then, $v_{l, m}$ satisfies the periodicity $v_{l, m}=v_{l+z_{2}, m-1}$, and the $\mathrm{P} \Delta \mathrm{E}$ reduces to an $\mathrm{O} \Delta \mathrm{E}$ :

$$
\begin{equation*}
f\left(v_{n}, v_{n+1}, v_{n+z_{2}}, v_{n+z_{2}+1} ; \alpha\right)=0 \tag{2}
\end{equation*}
$$

We suppose that our equation (1) arises as the compatibility condition of two linear equations, that is, it has a Lax pair. A Lax pair $L_{l, m}, M_{l, m}$ for a $\mathrm{P} \Delta \mathrm{E}$ (1) is a pair of matrices that satisfy (cf [9])

$$
\begin{equation*}
L_{l, m} M_{l, m}^{-1}-M_{l+1, m}^{-1} L_{l, m+1}=0 \tag{3}
\end{equation*}
$$

Similarly, an $\mathrm{O} \Delta \mathrm{E}$ has a Lax pair $\mathcal{L}_{n}, \mathcal{M}_{n}$ if they are non-singular matrices that satisfy

$$
\begin{equation*}
\mathcal{M}_{n} \mathcal{L}_{n}-\mathcal{L}_{n+1} \mathcal{M}_{n}=0 \tag{4}
\end{equation*}
$$

Using the $\left(1, z_{2}\right)$ traveling wave reduction, the Lax pair for a $\mathrm{P} \Delta \mathrm{E}$ reduces to matrices $L_{n}, M_{n}$ which satisfy the following equation:

$$
\begin{equation*}
L_{n} M_{n}^{-1}-M_{n+1}^{-1} L_{n+z_{2}}=0 \tag{5}
\end{equation*}
$$

The monodromy matrix $\mathcal{L}_{n}$ for the ( $1, z_{2}$ ) reduction is given by (cf [8])

$$
\begin{equation*}
\mathcal{L}_{n}=M_{n}^{-1} \prod_{i=0}^{z_{2}-1} L_{i+n} \tag{6}
\end{equation*}
$$

where the inversely ordered product is

$$
\begin{equation*}
\prod_{i=a}^{\widehat{b}} L_{i}:=L_{b} L_{b-1} \ldots L_{a+1} L_{a} . \tag{7}
\end{equation*}
$$

Taking $\mathcal{M}_{n}=L_{n}$, we obtain a Lax pair $\mathcal{L}_{n}, \mathcal{M}_{n}$ for the reduced $\mathrm{O} \Delta \mathrm{E}$ (2) from the Lax pair of the corresponding $\mathrm{P} \Delta \mathrm{E}$ (1) cf [9]. Recently, a description of $\left(z_{1}, z_{2}\right)$ reduction, with general $\left(z_{1}, z_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$, is given in [4, 11]. This generalizes the reductions in [8] where the case $\left(z_{1}, z_{2}\right) \in \mathbb{N} \times \mathbb{N}$ with $z_{1}, z_{2}$ co-prime was considered. In [11], it was proved that for any $\left(z_{1}, z_{2}\right)$ reduction, there is a $\mathcal{M}$ with whom the monodromy matrix $\mathcal{L}$ forms a Lax pair for the reduction, and explicit formulae for $\mathcal{L}, \mathcal{M}$ in terms of the reduced Lax matrices $L, M$ were provided.

It follows from equation (4) that the trace of $\mathcal{L}_{n}$ is invariant under the map obtained from an $O \Delta E$. Since the reduced Lax matrices generally depend on a spectral parameter, integrals
for the $\mathrm{O} \Delta \mathrm{E}(2)$ are obtained by expanding the trace of the monodromy matrix in powers of the spectral parameter. Therefore, to give explicit expressions for these integrals, we need to expand a product of $L$ matrices. We split the $L$ matrices in the form $L_{i}=r_{i}\left(\lambda X_{i}+Y_{i}\right)$, where $\lambda$ is (a function of) the spectral parameter. Next, we consider the formal expansion of the matrix product in a non-commutative Vieta formula:

$$
\begin{align*}
\prod_{i=a}^{\curvearrowleft}\left(\lambda X_{i}+Y_{i}\right) & =\sum_{r=0}^{b-a+1} \lambda^{b-a+1-r} Z_{r}^{a, b}  \tag{8a}\\
& =\sum_{r=0}^{b-a+1} \lambda^{r} \widetilde{Z}_{r}^{a, b} \tag{8b}
\end{align*}
$$

where

$$
\begin{align*}
& Z_{r}^{a, b}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} X_{b} X_{b-1} \cdots X_{i_{r}+1} Y_{i_{r}} X_{i_{r}-1} \cdots X_{i_{1}+1} Y_{i_{1}} X_{i_{1}-1} \cdots X_{a},  \tag{9a}\\
& \widetilde{Z}_{r}^{a, b}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} Y_{b} Y_{b-1} \cdots Y_{i_{r}+1} X_{i_{r}} Y_{i_{r}-1} \cdots Y_{i_{1}+1} X_{i_{1}} Y_{i_{1}-1} \cdots Y_{a} . \tag{9b}
\end{align*}
$$

This is a generalization of the Vieta expansion with commutative variables:

$$
\begin{equation*}
\prod_{i=a}^{\widehat{b}}\left(\lambda+f_{i}\right)=\sum_{r=0}^{b-a+1} \lambda^{b-a+1-r} s_{r}^{a, b} \tag{10}
\end{equation*}
$$

where the multi-sums of products $s_{r}^{a, b}$ are the elementary symmetric functions,

$$
\begin{equation*}
s_{r}^{a, b}\left\{f_{i}\right\}:=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} \prod_{j=1}^{r} f_{i_{j}} \tag{11}
\end{equation*}
$$

In this paper, we will consider two different forms of $X_{i}$ and $Y_{i}$ with special properties such that the elements of the matrix $Z_{r}^{a, b}$ or $\widetilde{Z}_{r}^{a, b}$ can be expressed in terms of multi-sums of products $\Theta$, respectively $\Phi$.

For the reduced mKdV equation [6],

$$
\begin{equation*}
\alpha_{1}\left(v_{n} v_{n+z_{2}}-v_{n+1} v_{n+z_{2}+1}\right)+\alpha_{2} v_{n} v_{n+1}-\alpha_{3} v_{n+z_{2}} v_{n+z_{2}+1}=0 \tag{12}
\end{equation*}
$$

and for the reduced sine-Gordon equation [6],

$$
\begin{equation*}
\beta_{1}\left(v_{n} v_{n+z_{2}+1}-v_{n+1} v_{n+z_{2}}\right)+\beta_{2} v_{n} v_{n+1} v_{n+z_{2}} v_{n+z_{2}+1}-\beta_{3}=0 \tag{13}
\end{equation*}
$$

the $L$ matrix can be written as $L_{i}=\lambda X_{i}+Y_{i}$, where

$$
X_{i}=\left(\begin{array}{ll}
0 & 1  \tag{14}\\
1 & 0
\end{array}\right)=: J, \quad Y_{i}=\left(\begin{array}{cc}
v_{i} / v_{i+1} & 0 \\
0 & v_{i+1} / v_{i}
\end{array}\right)
$$

and $\lambda$ is the spectral parameter. Substituting (14) in equations ( $9 a$ ) and ( $9 b$ ), we derive multi-sums of products, $\Theta$, with different arguments:

$$
\begin{align*}
& \Theta_{r, \epsilon}^{a, b}\left\{\left(\frac{v_{i}}{v_{i+1}}\right)^{(-1)^{i}}\right\}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} \prod_{j=1}^{r}\left(\left(\frac{v_{i_{j}}}{v_{i_{j}+1}}\right)^{(-1)^{i_{j}}}\right)^{(-1)^{j+\epsilon}},  \tag{15}\\
& \Theta_{r, \epsilon}^{a, b}\left\{v_{i} v_{i+1}\right\}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} \prod_{j=1}^{r}\left(v_{i_{j}} v_{i_{j}+1}\right)^{(-1)^{j+\epsilon}} . \tag{16}
\end{align*}
$$

See lemmas 1 and 4. The latter one is the definition of $\Theta$ given in [6]. The general definition of $\Theta$,

$$
\begin{equation*}
\Theta_{r, \epsilon}^{a, b}\left\{f_{i}\right\}:=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b} \prod_{j=1}^{r}\left(f_{i_{j}}\right)^{(-1)^{j+\epsilon}}, \tag{17}
\end{equation*}
$$

where $f$ is a function on $[a, b] \subset \mathbb{Z}$, is obtained by replacing $Y_{i}$ with

$$
D_{i}=\left(\begin{array}{cc}
f_{i}^{(-1)^{i}} & 0  \tag{18}\\
0 & f_{i}^{(-1)^{i+1}}
\end{array}\right)
$$

Substituting $X_{i}=J$ and $Y_{i}=D_{i}$ into the Vieta expansion (9a), we obtain

$$
\begin{equation*}
Z_{r}^{a, b}=J^{b-a+1-r} \Theta_{r}^{a, b}, \tag{19}
\end{equation*}
$$

where

$$
\Theta_{r}^{a, b}=\left(\begin{array}{cc}
\Theta_{r, a-1}^{a, b}\left\{f_{i}\right\} & 0  \tag{20}\\
0 & \Theta_{r, a}^{a, b}\left\{f_{i}\right\}
\end{array}\right)
$$

Equation (19) can be generalized to $2 n \times 2 n$ matrices $J$ and $D$, provided they satisfy the following properties:

$$
J^{2}=I, \quad D_{i} J D_{i}=J, \quad \text { and } \quad D_{i} \quad \text { is diagonal. }
$$

To illustrate the second way of splitting $L$, we write the $L$ matrices of the mKdV and sine-Gordon equations in a different way with $X_{i}=H$ and $Y_{i}=s_{i} A_{i}^{i}$, where $H$ and $A_{j}^{i}$ are defined as

$$
H:=\left(\begin{array}{ll}
0 & 1  \tag{21}\\
0 & 0
\end{array}\right), \quad A_{j}^{i}=\left(\begin{array}{cc}
a_{i} & a_{i} b_{j} \\
1 & b_{j}
\end{array}\right)
$$

Then, with special properties of $H$ and $A$ we obtain multi-sums of products called $\Psi$ which are introduced below. In particular, if we take $s_{i}=f_{i}, a_{i}=1 / f_{i}$ and $b_{i}=0$, then formula (9b) can be evaluated as

$$
\widetilde{Z}_{r}^{a, b}=\left(\begin{array}{cc}
\Phi_{r}^{a, b-1} & \Phi_{r-1}^{a+1, b-1}  \tag{22}\\
f_{b} \Phi_{r}^{a, b-2} & f_{b} \Phi_{r-1}^{a+1, b-2}
\end{array}\right)
$$

where multi-sums of products, $\Phi$, are defined as

$$
\begin{equation*}
\Phi_{r}^{a, b}\left\{f_{i}\right\}:=\sum_{a \leqslant i_{1}, i_{1}+1<i_{2}, i_{2}+1<\cdots<i_{r-1}, i_{r-1}+1<i_{r} \leqslant b} \prod_{j=1}^{r} f_{i_{j}} \tag{23}
\end{equation*}
$$

with $f$ as a function on $[a, b] \subset \mathbb{Z}$. More generally, when $H$ and $A$ satisfy

$$
\begin{equation*}
H^{2}=0, \quad A_{m}^{n} A_{l}^{k}=\alpha_{k, m} A_{l}^{n}, \quad H A_{m}^{n} H=H \quad \text { and } \quad A_{m}^{n} H A_{l}^{k}=A_{l}^{n}, \tag{24}
\end{equation*}
$$

substituting $X_{i}=H$ and $Y_{i}=s_{i} A_{i}^{i}$ in equation (9b) yields

$$
\begin{equation*}
\widetilde{Z}_{r}^{a, b}=\Psi_{r-1}^{a+1, b-2} H A_{a}^{b-1}+\Psi_{r-1}^{a+2, b-1} A_{a+1}^{b} H+\Psi_{r-2}^{a+2, b-2} H+\Psi_{r}^{a+1, b-1} A_{a}^{b} \tag{25}
\end{equation*}
$$

where $\Psi$ is

$$
\begin{equation*}
\Psi_{r}^{a, b}:=s_{a-1} \Phi_{r}^{a, b}\left\{\frac{1}{s_{i+1} \alpha_{i-1, i} \alpha_{i, i+1}}\right\} \prod_{i=a}^{b+1}\left(s_{i} \alpha_{i-1, i}\right) \tag{26}
\end{equation*}
$$

The elementary symmetric functions satisfy the following recursive formulae (for all $c$ such that $0 \leqslant c \leqslant b-a+1)$ :

$$
\begin{equation*}
s_{r}^{a, b}=\sum_{i=m_{1}}^{m_{2}} s_{r-i}^{a+c, b} s_{i}^{a, a+c-1}, \tag{27a}
\end{equation*}
$$

$$
\begin{equation*}
s_{r}^{a, b}=\sum_{i=m_{1}}^{m_{2}} s_{i}^{b-c+1, b} s_{r-i}^{a, b-c}, \tag{27b}
\end{equation*}
$$

where $m_{1}=\max (0, r+a+c-b-1)$ and $m_{2}=\min (r, c)$, or one can take $m_{1}=0, m_{2}=r$. These recursive formulae are obtained by using the Vieta expansion (10) and writing

$$
\begin{equation*}
\prod_{i=a}^{\curvearrowleft} z_{i}=\prod_{i=a+c}^{\stackrel{\curvearrowleft}{b}} z_{i} \prod_{i=a}^{a \stackrel{\curvearrowleft}{a+c-1}} z_{i} \tag{28}
\end{equation*}
$$

where $z_{i}=\lambda+f_{i}$ in this case. Taking $c=r$, these recursive formulae provide us with an efficient way of producing and storing the elementary symmetric functions.

We will obtain similar recursive formulae for $Z_{r}^{a, b}$ and $\widetilde{Z}_{r}^{a, b}$ by using the Vieta expansion and the matrix analogue of (28). Recursive formulae for $\Theta$ and $\Phi$ are derived from those for $Z_{r}^{a, b}$ and $\widetilde{Z}_{r}^{a, b}$, respectively. The recursivity of these multi-sums of products gives us a convenient way of computing these multi-sums of products.

The rest of this paper is organized as follows. In section 3, we explain how $\Theta$ arises from equation ( $9 a$ ) using properties of $J$ (14) and $D_{i}(18)$. Then, the recursive formulae for $\Theta$ are obtained. We give two closed-form expressions for integrals of the mKdV equation in terms of $\Theta$, one of which coincides with the form discovered in [6], using the two Vieta formulae ( $9 a$ ) and ( $9 b$ ). In section 4, we show how the multi-sums of products, $\Phi$, emerge as entries of matrix coefficients. The recursive formulae for $\Phi$ are given and we prove equation (25). As a first application, we express integrals of the mKdV equation in terms of $\Psi$. Next, we present a general formula for integrals for all equations whose reduced Lax matrices can be written in the form

$$
\begin{equation*}
r_{i}\left(\lambda H+s_{i} A_{i}^{i}\right) \tag{29}
\end{equation*}
$$

We explicitly write the reduced Lax matrices for the equation in the ABS classification in form (29), with the exception of $Q_{4}$. So we obtain closed-form expressions for integrals of these equations from the general formula. The final section compares two sets of integrals expressed in terms of $\Theta$ and $\Psi$, respectively. This section also discusses possible future work.

## 3. Multi-sums of products, $\Theta$

In this section, we first present the properties of the multi-sums of products, $\Theta$. Then, an application of $\Theta$ is given. We derive two closed-form expressions for integrals of mKdV .

### 3.1. Properties of the multi-sums of products, $\Theta$

The integrals in terms of the multi-sums of products (17) with $f_{i}=v_{i} v_{i+1}$, first introduced in [6], were discovered by inspection and proved by induction. We found that the multi-sums of products can actually be derived from (Vieta-like) formulae (9a) and (9b) and special properties of the reduced Lax matrices. We also show that the following properties, which were used in the proofs in [6][identity (3),(4)],

$$
\begin{align*}
& \Theta_{n, \epsilon}^{a, b}=\Theta_{n, \epsilon}^{a+1, b}+f_{a}^{(-1)^{1+\epsilon}} \Theta_{n-1, \epsilon \pm 1}^{a+1, b},  \tag{30}\\
& \Theta_{n, \epsilon}^{a, b}=\Theta_{n, \epsilon}^{a, b-1}+f_{b}^{(-1)^{n+\epsilon} \Theta_{n-1, \epsilon}^{a, b-1}} \tag{31}
\end{align*}
$$

are special cases of the more general identities (33a) and (33b) given below. These identities (33a) and (33b) are similar to the recursive formulae for the symmetric functions (27a) and
(27b), respectively, and can be used to efficiently compute the multi-sums of products, $\Theta$. They also play an important role in calculating gradients for proving the functional independence and the involutivity of integrals [13, 14].

Lemma 1. Let $J$ and $D_{i}$ be as in (14) and (18) respectively. The multi-sums of products $\Theta_{r, \epsilon}^{a, b}$ defined by (17) are the entries in the matrix coefficients in the expansion

$$
\begin{equation*}
\prod_{i=a}^{\widehat{b}}\left(\lambda J+D_{i}\right)=\sum_{r=0}^{b-a+1}(\lambda J)^{b-a+1-r} \Theta_{r}^{a, b} \tag{32}
\end{equation*}
$$

where $\Theta_{r}^{a, b}$ is defined in (20).
Proof. We use Vieta expansions ( $8 a$ ) and (9a) to expand the left-hand side of equation (20):

$$
\prod_{i=a}^{\widehat{b}}\left(\lambda J+D_{i}\right)=\sum_{r=0}^{b-a+1} \lambda^{b-a+1-r} Z_{r}^{a, b}
$$

Using properties of $J$ and $D_{i}$ such as $D_{i} J^{k}=J^{k} D_{i}^{(-1)^{k}}$ and $J^{2}=I$, we have

$$
\begin{aligned}
Z_{r}^{a, b} & =\sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} J J \ldots J D_{i_{r}} J \ldots J D_{i_{r-1}} J \ldots J D_{i_{1}} J \ldots J \\
& =\sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} J^{b-i_{r}} D_{i_{r}} J^{i_{r}-i_{r-1}-1} D_{i_{r-1}} \ldots J^{i_{2}-i_{1}-1} D_{i_{1}} J^{i_{1}-a} \\
& =\sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} J^{b-i_{r}} D_{i_{r}} J^{i_{r}-i_{r-1}-1} D_{i_{r-1}} \ldots J^{i_{3}-i_{2}-1} D_{i_{2}} J^{i_{2}-a-1} D_{i_{1}}^{(-1)^{i_{1}-a}} \\
& =\sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} J^{b-i_{r}} D_{i_{r}} J^{i_{r}-i_{r-1}-1} D_{i_{r-1}} \ldots J^{i_{3}-a-2} D_{i_{2}}^{(-1)^{i_{2}-a-1}} D_{i_{1}}^{(-1)^{i_{1}-a}} \\
& \vdots \\
& =\sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} J^{b-a+1-r} D_{i_{r}}^{(-1)^{i_{r}-(r-1)-a}} D_{i_{r-1}}^{(-1)^{i_{r-1}-(r-2)-a}} \ldots D_{i_{1}}^{(-1)^{i_{1}-a}} .
\end{aligned}
$$

Now since

$$
D_{i}^{(-1)^{k}}=\left(\begin{array}{cc}
f_{i}^{(-1)^{i+k}} & 0 \\
0 & f_{i}^{(-1)^{i+k+1}}
\end{array}\right),
$$

we have

$$
\begin{aligned}
\Theta_{r}^{a, b}= & \sum_{a \leqslant i_{1}<i_{2} \ldots<i_{r} \leqslant b} \\
& \left(\begin{array}{lll}
f_{i_{r}}^{(-1)^{-r-a+1}} f_{i_{r-1}}^{(-1)^{-(r-1)-a+1}} \ldots f_{i_{1}}^{(-1)^{-1-a+1}} & 0 \\
0 & & f_{i_{r}}^{(-1)^{-r-a+2}} f_{i_{r-1}}^{(-1)^{-(r-1)-a+2}} \ldots f_{i_{1}}^{(-1)^{-1-a+2}}
\end{array}\right) \\
= & \left(\begin{array}{cc}
\Theta_{r, a-1}^{a, b} & 0 \\
0 & \Theta_{r, a}^{a, b}
\end{array}\right) .
\end{aligned}
$$

Using lemma 1 and the matrix analogue of (28), we obtain the following recursive formulae for $\Theta$.

Proposition 2. For any $0 \leqslant c \leqslant b-a+1$, we have

$$
\begin{align*}
\Theta_{r, \epsilon}^{a, b} & =\sum_{i=m_{1}}^{m_{2}} \Theta_{i, \epsilon}^{a, a+c-1} \Theta_{r-i, \epsilon+i}^{a+c, b}  \tag{33a}\\
\Theta_{r, \epsilon}^{a, b} & =\sum_{i=m_{1}}^{m_{2}} \Theta_{r-i, \epsilon}^{a, b-c} \Theta_{i, r+\epsilon+i}^{b-c+1, b} \tag{33b}
\end{align*}
$$

where $m_{1}=\max (0, r+a+c-b-1)$ and $m_{2}=\min (r, c)$.
Proof. It is easy to see that (33b) follows from (33a) by substituting $c=b-a-c+1$ in (33a), changing variable $i=r-j$ and using the fact that $-j \leqslant \min (x, y) \Longrightarrow j \geqslant \max (-x,-y)$.

By using the Vieta expansion (8a) and the product structure (28), the recursive formulae (27a) and (27b) still hold if we replace $s$ by $Z$. Therefore, using lemma 1 we have

$$
\begin{equation*}
J^{b-a+1-r} \Theta_{r}^{a, b}=\sum_{i=m_{1}}^{m_{2}} J^{b-(a+c)+1-(r-i)} \Theta_{r-i}^{a+c, b} J^{c-i} \Theta_{i}^{a, a+c-1} \tag{34}
\end{equation*}
$$

If $b-a+1-r$ is even and using equation (20), we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\Theta_{r, a-1}^{a, b} & 0 \\
0 & \Theta_{r, a}^{a, b}
\end{array}\right) & =\sum_{m_{1} \leqslant i \leqslant m_{2}, c-i \text { even }}\left(\begin{array}{cc}
\Theta_{r-i, a+c-1}^{a+c, b} & 0 \\
0 & \Theta_{r-i, a+c}^{a+c, b}
\end{array}\right)\left(\begin{array}{cc}
\Theta_{i, a-1}^{a, a+c-1} & 0 \\
0 & \Theta_{i, a}^{a, a+c-1}
\end{array}\right) \\
& +\sum_{m_{1} \leqslant i \leqslant m_{2}, c-i \text { odd }}\left(\begin{array}{cc}
0 & \Theta_{r-i, a+c}^{a+c, b} \\
\Theta_{r-i, a+c-1}^{a+c, b}
\end{array}\right)\left(\begin{array}{cc}
0 & \Theta_{i, a}^{a, a+c-1} \\
\Theta_{i, a-1}^{a, a+c-1} & 0
\end{array}\right)
\end{aligned}
$$

Therefore, we get
$\Theta_{r, a-1}^{a, b}=\sum_{i=m_{1}}^{m_{2}} \Theta_{i, a-1}^{a, a+c-1} \Theta_{r-i, a+i-1}^{a+c, b}, \quad \Theta_{r, a}^{a, b}=\sum_{i=m_{1}}^{m_{2}} \Theta_{i, a}^{a, a+c-1} \Theta_{r-i, a+i}^{a+c, b}$.
Since $\{a-1, a\}=\{0,1\}(\bmod 2)$, we obtain

$$
\Theta_{r, \epsilon}^{a, b}=\sum_{i=m_{1}}^{m_{2}} \Theta_{i, \epsilon}^{a, a+c-1} \Theta_{r-i, \epsilon+i}^{a+c, b}
$$

The proof for odd $b-a+1-r$ is similar.
Note that from the definition of $\Theta$ (17), or from equation (32), we have the following properties:

- $\Theta_{r, \epsilon}^{a, b}=0$ if $r<0$ or $r>b-a+1$,
- $\Theta_{0, \epsilon}^{a, b}=1$,
- $\Theta_{1, \epsilon}^{a, a}=f_{a}^{(-1)^{1+\epsilon}}$.

If we consider these properties as initial values of $\Theta$, then we can efficiently calculate $\Theta$ from the recursive formulae (33a) by taking $c=b-a$.

### 3.2. Applications of $\Theta$ to the $m K d V$ equation

The $\left(1, z_{2}\right)$ reductions of the Lax matrices for mKdV are given by

$$
L_{n}=\left(\begin{array}{cc}
\frac{v_{n}}{v_{n+1}} & k  \tag{35}\\
k & \frac{v_{n+1}}{v_{n}}
\end{array}\right) \quad \text { and } \quad M_{n}^{-1}=\left(\begin{array}{cc}
\alpha_{3} \frac{v_{n+2}}{v_{n}} & \alpha_{1} k \\
\alpha_{1} k & \alpha_{2} \frac{v_{n}}{v_{n+z_{2}}}
\end{array}\right) .
$$

Indeed, we have $L_{n} M_{n}^{-1}-M_{n+1}^{-1} L_{n+z_{2}}=\mathcal{F}_{\mathrm{mKdV}} \cdot N_{n}$, where $\mathcal{F}_{\mathrm{mKdv}}$ is the left-hand side of (12) and

$$
N_{n}=\left(\begin{array}{cc}
0 & \frac{k}{v_{n+1} v_{n+z_{2}}} \\
\frac{-k}{v_{n} v_{n+2}+1} & 0
\end{array}\right) .
$$

Using lemma 1 with $f_{i}=\left(v_{i} / v_{i+1}\right)^{(-1)^{i}}, a=0, b=z_{2}-1$, and taking the trace of the monodromy matrix (6), we obtain the following result.

Proposition 3. The closed-form expressions for integrals of the $m K d V$ equation are given as follows:

$$
\begin{equation*}
I_{r}=\alpha_{1}\left(\Theta_{r, 0}^{0, z_{2}-1}+\Theta_{r, 1}^{0, z_{2}-1}\right)+\alpha_{2} \frac{v_{0}}{v_{z_{2}}} \Theta_{r-1,0}^{0, z_{2}-1}+\alpha_{3} \frac{v_{z_{2}}}{v_{0}} \Theta_{r-1,1}^{0, z_{2}-1} \tag{36}
\end{equation*}
$$

where $z_{2}-r$ is odd.
However, in [6], integrals of the mKdV equation are expressed in terms of $\Theta$ with different arguments, namely $f_{i}=v_{i} v_{i+1}$. To derive the latter closed-form expressions for integrals of the mKdV equation, the following lemma was used [6].

Lemma 4. We have

$$
\begin{equation*}
\prod_{i=a}^{\curvearrowleft-1} L_{i}=\sum_{r=0}^{b-a} \widetilde{Z}_{r}^{a, b-1} \lambda^{r} \tag{37}
\end{equation*}
$$

where $f_{i}=v_{i} v_{i+1}$, and

$$
\widetilde{Z}_{r}^{a, b-1}=\left(\begin{array}{cc}
\frac{v_{a}}{v_{b}} \Theta_{r, 0}^{a, b-1} & 0 \\
0 & \frac{v_{b}}{v_{a}} \Theta_{r, 1}^{a, b-1}
\end{array}\right),
$$

when $r$ is even, and

$$
\widetilde{Z}_{r}^{a, b-1}=\left(\begin{array}{cc}
0 & \frac{1}{v_{a} v_{b}} \Theta_{r, 1}^{a, b-1} \\
v_{a} v_{b} \Theta_{r, 0}^{a, b-1} & 0
\end{array}\right)
$$

when $r$ is odd.
Whereas for lemma 1 we used the Vieta expansion (9a), this lemma is proved by using the Vieta expansion (9b); see appendix A.

Multiplying both sides of equation (37) by $M_{0}^{-1}$ and taking the trace we obtain the following result, which is theorem 3 in [6].

Proposition 5. The trace of the monodromy matrix of the $m K d V$ equation is

$$
\operatorname{Tr}\left(\mathcal{L}_{0}\right)=\sum_{r=0}^{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor} k^{2 r} I_{r},
$$

where

$$
\begin{equation*}
I_{r}=\alpha_{1}\left(v_{0} v_{z_{2}} \Theta_{2 r-1,0}^{0, z_{2}-1}+\frac{1}{v_{0} v_{z_{2}}} \Theta_{2 r-1,1}^{0, z_{2}-1}\right)+\alpha_{2} \Theta_{2 r, 1}^{0, z_{2}-1}+\alpha_{3} \Theta_{2 r, 0}^{0, z_{2}-1} \tag{38}
\end{equation*}
$$

with $f_{i}=v_{i} v_{i+1}$.

It follows that the coefficients $I_{r}$ form a set of integrals for the mKdV equation. Their invariance can also be proven directly. By using the properties (30) and (31) of the multi-sums of products, it was shown in [6] that

$$
\begin{equation*}
S\left(I_{r}\right)-I_{r}=\mathcal{F}_{\mathrm{mKdV}} \cdot \Lambda_{r} \tag{39}
\end{equation*}
$$

where $S$ is the shift operator $S\left(v_{i}\right)=v_{i+1}$ and

$$
\begin{equation*}
\Lambda_{r}=\frac{1}{v_{0} v_{1} v_{z_{2}} v_{z_{2}+1}} \Theta_{2 r-1,1}^{1, z_{2}-1}-\Theta_{2 r-1,0}^{1, z_{2}-1} \tag{40}
\end{equation*}
$$

is called an integrating factor.
It is important to note that the set of integrals expressed in $\Theta$ with $f_{i}=\left(v_{i} / v_{i+1}\right)^{(-1)^{i}}$ is the same as that expressed in $\Theta$ with $f_{i}=v_{i} v_{i+1}$ due to the following identities:

$$
\Theta_{r, a+\epsilon}^{a, b}\left\{\left(\frac{v_{i}}{v_{i+1}}\right)^{(-1)^{i}}\right\}=\left(\frac{v_{a}}{v_{b+1}}\right)^{(-1)^{\epsilon+1}} \Theta_{b-a+1-r, \epsilon+1}^{a, b}\left\{v_{i} v_{i+1}\right\}
$$

if $b-a+1-r$ is even, and

$$
\Theta_{r, a+\epsilon}^{a, b}\left\{\left(\frac{v_{i}}{v_{i+1}}\right)^{(-1)^{i}}\right\}=\left(v_{a} v_{b+1}\right)^{(-1)^{\epsilon+1}} \Theta_{b-a+1-r, \epsilon+1}^{a, b}\left\{v_{i} v_{i+1}\right\},
$$

if $b-a+1-r$ is odd.

## 4. Multi-sums of products, $\Phi$

Writing the reduced Lax matrices as linear combinations of rank-1 $2 \times 2$ matrices gives rise to closed-form expressions in terms of multi-sums of products $\Phi$, defined in equation (23). In this section, we first give recursive formulae for $\Phi$. Then, by using the non-commutative Vieta expansion, we give formula (25) for products of $L_{i}=r_{i}\left(\lambda H+s_{i} A_{i}^{i}\right)$ matrices in terms of $\Psi$ (26) where $A_{j}^{i}$ is defined in (21). This formula is first applied to the mKdV equation. At the end, we give the analogous results for nearly all equations in the Adler-Bobenko-Suris list [1].

### 4.1. Recursive formulae for the multi-sums of products, $\Phi$

The lemma below explains how $\Phi$ is derived from the Vieta expansions ( $8 b$ ) and ( $9 b$ ).
Lemma 6. Let $H$ and $F_{i}$ be defined by

$$
H=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F_{i}=\left(\begin{array}{cc}
1 & 0 \\
f_{i} & 0
\end{array}\right)
$$

and let $f$ be a function on $[a, b+1] \subset \mathbb{Z}$. The multi-sums of products, $\Phi$, defined by (23) appear in the entries of the matrix coefficients in the expansion

$$
\prod_{i=a}^{\stackrel{h}{b+1}}\left(\lambda H+F_{i}\right)=\sum_{r=0}^{b-a+2} \lambda^{r} W_{r}^{a, b+1}
$$

where

$$
W_{r}^{a, b+1}=\left(\begin{array}{cc}
\Phi_{r}^{a, b} & \Phi_{r-1}^{a+1, b} \\
f_{b+1} \Phi_{r}^{a, b-1} & f_{b+1} \Phi_{r-1}^{a+1, b-1}
\end{array}\right) .
$$

Proof. Using the properties $H^{2}=0, F_{i} F_{j}=F_{i}, F_{i} H F_{j}=f_{j} F_{i}, H F_{i} H=f_{i} H$ and the non-commutative Vieta formula (9b), we have

$$
\begin{aligned}
W_{r}^{a, b+1}= & \sum_{a+2 \leqslant i_{1}, i_{1}+1<i_{2}, i_{2}+1<\cdots<i_{r-2} \leqslant b-1} H F_{b} \ldots F_{i_{r-2}+1} H F_{i_{r-2}-1} \ldots F_{i_{1}+1} H F_{i_{1}-1} \ldots F_{a+1} H \\
& +\sum_{a+1 \leqslant i_{1}, i_{1}+1<i_{2}, i_{2}+1<\cdots<i_{r-1} \leqslant b-1} H F_{b} \ldots F_{i_{r-1}+1} H F_{i_{r-1}-1} \ldots F_{i_{1}+1} H F_{i_{1}-1} \ldots F_{a} \\
& +\sum_{a+2 \leqslant i_{1}, i_{1}+1<i_{2}, i_{2}+1<\cdots<i_{r-1} \leqslant b} F_{b+1} \ldots F_{i_{r-1}+1} H F_{i_{r-1}-1} \ldots F_{i_{1}+1} H F_{i_{1}-1} \ldots F_{a+1} H \\
& +\sum_{a+1 \leqslant i_{1}, i_{1}+1<i_{2}, i_{2}+1<\cdots<i_{r} \leqslant b} F_{b+1} \ldots F_{i_{r}+1} H F_{i_{r}-1} \ldots F_{i_{1}+1} H F_{i_{1}-1} \ldots F_{a} \\
= & f_{b} \Phi_{r-2}^{a+1, b-2}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)+f_{b} \Phi_{r-1}^{a, b-2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\Phi_{r-1}^{a+1, b-1}\left(\begin{array}{cc}
0 & 1 \\
0 & f_{b+1}
\end{array}\right)+\Phi_{r}^{a, b-1}\left(\begin{array}{cc}
1 & 0 \\
f_{b+1} & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
f_{b} \Phi_{r-1}^{a, b-2}+\Phi_{r}^{a, b-1} & f_{b} \Phi_{r-2}^{a+1, b-2}+\Phi_{r-1}^{a+1, b-1} \\
f_{b+1} \Phi_{r}^{a, b-1} & f_{b+1} \Phi_{r-1}^{a+1, b-1}
\end{array}\right) .
\end{aligned}
$$

From the definition of $\Phi$, we have the following properties:

$$
\begin{align*}
& \Phi_{r}^{a, b}=\Phi_{r}^{a, b-1}+f_{b} \Phi_{r-1}^{a, b-2}  \tag{41}\\
& \Phi_{r}^{a, b}=f_{a} \Phi_{r-1}^{a+2, b}+\Phi_{r}^{a+1, b} \tag{42}
\end{align*}
$$

Therefore, we obtain

$$
W_{r}^{a, b+1}=\left(\begin{array}{cc}
\Phi_{r}^{a, b} & \Phi_{r-1}^{a+1, b} \\
f_{b+1} \Phi_{r}^{a, b-1} & f_{b+1} \Phi_{r-1}^{a+1, b-1}
\end{array}\right) .
$$

Using this lemma, we derive recursive formulae for $\Phi$.
Proposition 7. With $a-1 \leqslant c \leqslant b+1$, we have

$$
\begin{align*}
\Phi_{r}^{a, b} & =\sum_{i=0}^{r}\left(\Phi_{r-i}^{a, c-1} \Phi_{i}^{c+1, b}+\Phi_{r-i-1}^{a, c-2} \Phi_{1}^{c, c} \Phi_{i}^{c+2, b}\right)  \tag{43a}\\
& =\sum_{i=0}^{r}\left(\Phi_{r-i}^{a, c-1} \Phi_{1}^{c+1, c+1} \Phi_{i-1}^{c+3, b}+\Phi_{r-i}^{a, c} \Phi_{i}^{c+2, b}\right) \tag{43b}
\end{align*}
$$

We note that properties (41) and (42) are special cases of these recursive formulae (43a) and (43b) where $c=b$ and $c=a-1$, respectively.

Proof. We use recursive formula (27a) with $W$ replacing $s, c$ replacing $a+c-1$. We have

$$
\begin{aligned}
W_{r}^{a, b+1} & =\sum_{i=0}^{r} W_{i}^{c+1, b+1} W_{r-i}^{a, c} \\
& =\sum_{i=0}^{r}\left(\begin{array}{cc}
\Phi_{i}^{c+1, b} & \Phi_{i-1}^{c+2, b} \\
f_{b+1} \Phi_{i}^{c+1, b-1} & f_{b+1} \Phi_{i-1}^{c+2, b-1}
\end{array}\right)\left(\begin{array}{cc}
\Phi_{r-i}^{a, c-1} & \Phi_{r-i-1}^{a+1, c-1} \\
f_{c} \Phi_{r-i}^{a, c-2} & f_{c} \Phi_{r-i-1}^{a+1, c-2}
\end{array}\right) .
\end{aligned}
$$

Equating the entry in the first column and first row, we get

$$
\Phi_{r}^{a, b}=\sum_{i=0}^{r}\left(\Phi_{r-i}^{a, c-1} \Phi_{i}^{c+1, b}+\Phi_{r-i-1}^{a, c-2} f_{c} \Phi_{i}^{c+2, b}\right)
$$

which is the first recursive formula (43a). The second recursive formula (43a) is obtained from the first one by using the following

$$
\Phi_{i}^{c+1, b}=\Phi_{i}^{c+2, b}+\Phi_{1}^{c+1, c+1} \Phi_{i-1}^{c+3, b}, \quad \Phi_{r-i-1}^{a, c-2} \Phi_{1}^{c, c}=\Phi_{r-i}^{a, c}-\Phi_{r-i}^{a, c-1}
$$

Note that from the definition of $\Phi(23)$, we have the following properties:

- $\Phi_{r}^{a, b}=0$ when $r<0$ or $r>\lfloor(b-a+1) / 2\rfloor$,
- $\Phi_{0}^{a, b}=1$,
- $\Phi_{1}^{a, a}=f_{a}$.

Once again, these properties can be considered as initial values to calculate $\Phi$ using the recursive formulae for $\Phi$ provided.

### 4.2. Product of $L$ matrices and multi-sum of products, $\Psi$

Let $A_{j}^{i}$ and $H$ be matrices that are defined in (21). Now using the Vieta expansions (8b) and (9b) and the properties of $H$ and $A$, we obtain the following lemma.

Lemma 8. Let $L_{i}=r_{i}\left(\lambda H+s_{i} A_{i}^{i}\right)$. We have

$$
\prod_{i=a}^{\widehat{b}} L_{i}=\left(\sum_{r=0}^{b-a+1} X_{r}^{a, b} \lambda^{r}\right) \prod_{i=a}^{b} r_{i}
$$

with

$$
\begin{equation*}
X_{r}^{a, b}=\Psi_{r-1}^{a+1, b-2} H A_{a}^{b-1}+\Psi_{r-1}^{a+2, b-1} A_{a+1}^{b} H+\Psi_{r-2}^{a+2, b-2} H+\Psi_{r}^{a+1, b-1} A_{a}^{b} \tag{44}
\end{equation*}
$$

where $c_{i}=s_{i}\left(a_{i-1}+b_{i}\right)$ and

$$
\begin{equation*}
\Psi_{r}^{a, b}:=s_{a-1} \Phi_{r}^{a, b}\left\{\frac{s_{i+1}}{c_{i} c_{i+1}}\right\} \prod_{i=a}^{b+1} c_{i} \tag{45}
\end{equation*}
$$

The general case (25) is obtained in the same way.
Proof. For brevity of notation, we write $B_{i}:=s_{i} A_{i}^{i}$. Using properties of $H$ and $A_{m}^{n}$, similar to (24) we have

$$
B_{k} B_{k-1} \ldots B_{l}=s_{k} A_{k}^{k} \ldots s_{l} A_{l}^{l}=s_{l} A_{l}^{k} \prod_{r=l+1}^{k} c_{r},
$$

so when $l<i<k$ we have

$$
\begin{gathered}
B_{k} B_{k-1} \ldots B_{i+1} H B_{i-1} \ldots B_{l}=s_{i+1}\left(A_{i+1}^{k} \prod_{r=i+2}^{k} c_{r}\right) H s_{l}\left(A_{l}^{i-1} \prod_{r=l+1}^{i-1} c_{r}\right) \\
=\frac{s_{i+1}}{c_{i} c_{i+1}} s_{l} A_{l}^{k} \prod_{r=l+1}^{k} c_{r}=s_{l} f_{i} A_{l}^{k} \prod_{r=l+1}^{k} c_{r}
\end{gathered}
$$

Therefore, we obtain

$$
B_{k} \ldots B_{i_{r}+1} H B_{i_{r}-1} \ldots B_{i_{1}+1} H B_{i_{1}-1} \ldots B_{l}=s_{l} A_{l}^{k} \prod_{j=1}^{r} f_{i_{j}} \prod_{r=l+1}^{k} c_{r}
$$

when $l<i_{1}, i_{1}+1<i_{2}, \ldots<i_{i_{r}}<k$, and it equals 0 when $i_{j}=i_{j-1}+1$ for some $j$.

Now applying these formulae and formula (9b), we have

$$
\begin{aligned}
X_{r}^{a, b} & =\sum_{a+1 \leqslant i_{1}, i_{1}+1<i_{2}, \ldots<i_{r-1} \leqslant b-2} H B_{b-1} \ldots B_{i_{r-1}+1} H B_{i_{r-1}-1} \ldots B_{i_{1}+1} H B_{i_{1}-1} \ldots B_{a} \\
& +\sum_{a+2 \leqslant i_{1}, i_{1}+1<i_{2}, \ldots<i_{r-1} \leqslant b-1} B_{b} \ldots B_{i_{r-1}+1} H B_{i_{r-1}-1} \ldots B_{i_{1}+1} H B_{i_{1}-1} \ldots B_{a+1} H \\
& +\sum_{a+2 \leqslant i_{1}, i_{1}+1<i_{2}, \ldots<i_{r-2} \leqslant b-2} H B_{b-1} \ldots B_{i_{r-2}+1} H B_{i_{r-2}-1} \ldots B_{i_{1}+1} H B_{i_{1}-1} \ldots B_{a+1} H \\
& +\sum_{a+1 \leqslant i_{1}, i_{1}+1<i_{2}, \ldots<i_{r} \leqslant b-1} B_{b} \ldots B_{i_{r}+1} H B_{i_{r}-1} \ldots B_{i_{1}+1} H B_{i_{1}-1} \ldots B_{a} \\
= & \left(\frac{s_{a}}{c_{b}} \Phi_{r-1}^{a+1, b-2} H A_{a}^{b-1}+\frac{s_{a+1}}{c_{a+1}} \Phi_{r-1}^{a+2, b-1} A_{a+1}^{b} H+\frac{s_{a+1}}{c_{a+1} c_{b}} \Phi_{r-2}^{a+2, b-2} H+s_{a} \Phi_{r}^{a+1, b-1} A_{a}^{b}\right) \prod_{i=a+1}^{b} c_{i} \\
= & \Psi_{r-1}^{a+1, b-2} H A_{a}^{b-1}+\Psi_{r-1}^{a+2, b-1} A_{a+1}^{b} H+\Psi_{r-2}^{a+2, b-2} H+\Psi_{r}^{a+1, b-1} A_{a}^{b} .
\end{aligned}
$$

Note that if $r>\lfloor(b-a+1) / 2\rfloor$, we have $X_{r}^{a, b}=0$. We also note that lemma 6 is a special case of this lemma with $a_{i}=1 / f_{i}, b_{i}=0$ and $s_{i}=f_{i}$.

### 4.3. Application of $\Psi$ to the $m K d V$ equation

In this section, we present closed-form expressions for integrals of mKdV in terms of the multi-sums of products $\Psi$.

The reduced Lax pair for the mKdV equation given by (35) gives rise to the multi-sums of products, $\Theta$. Now we use a gauge transformation to obtain a new reduced Lax pair which gives the multi-sums of products, $\Psi$. Recall that for a $\mathrm{P} \Delta \mathrm{E}$ (1) with a Lax pair ( $L_{l, m}, M_{l, m}$ ), a gauge matrix $G_{l, m}$ gives us a new Lax pair for the equation, that is,

$$
\tilde{L}_{l, m}=G_{l+1, m} L_{l, m} G_{l, m}^{-1}, \widetilde{M}_{l, m}=G_{l, m+1} M_{l, m} G_{l, m}^{-1}
$$

These matrices reduce to matrices $\widetilde{L}, \widetilde{M}$ of the corresponding $\mathrm{O} \Delta \mathrm{E}$.
Using the gauge matrix

$$
G_{l, m}=\left(\begin{array}{cc}
0 & 1 / v_{l, m} \\
-1 / k & 0
\end{array}\right)
$$

we have a new reduced Lax pair for the mKdV equation:

$$
\widetilde{L}_{n}=\left(\begin{array}{cc}
\frac{v_{n+1}}{v_{n}} & \frac{-k^{2}}{v_{n}}  \tag{46}\\
-v_{n+1} & 1
\end{array}\right) \quad \text { and } \quad \tilde{M}_{n}^{-1}=\left(\begin{array}{cc}
\alpha_{2} \frac{v_{n}}{v_{n+z_{2}}} & -\alpha_{1} \frac{k^{2}}{v_{n+22}} \\
-\alpha_{1} v_{n} & \alpha_{3}
\end{array}\right)
$$

We note that the trace of the monodromy matrix is invariant under gauge transformations.
Now we write the reduced Lax pair for the mKdV equation as follows:

$$
\begin{equation*}
\widetilde{L}_{i}=r_{i}\left(s_{i} A_{i}^{i}+\lambda H\right), \quad\left(\widetilde{M}_{i}\right)^{-1}=\breve{r}_{i}\left(\breve{( }_{i} \breve{A}_{i}^{i}+\breve{\lambda} H\right), \tag{47}
\end{equation*}
$$

where

$$
\breve{A}_{j}^{i}=\left(\begin{array}{cc}
\breve{a}_{i} & \breve{a}_{i} \breve{b}_{j} \\
1 & \breve{b}_{j}
\end{array}\right)
$$

and

$$
\begin{array}{llll}
\lambda=1-k^{2}, & r_{i}=\frac{1}{v_{i}}, & s_{i}=-v_{i} v_{i+1}, & a_{i}=-\frac{1}{v_{i}}, \\
\breve{\lambda}=\lambda+\frac{\alpha_{2} \alpha_{3}-\alpha_{1}^{2}}{\alpha_{1}}, & \breve{r}_{i}=\frac{1}{v_{i+z_{2}}}, & \breve{s}_{i}=-\alpha_{1} v_{i} v_{i+z_{2}}, & \breve{a}_{i}=\frac{-\alpha_{2}}{v_{i+1} v_{i+z_{2}}}, \\
\breve{\breve{b}}
\end{array},
$$

Using lemma 8, we expand the trace of the monodromy matrix in powers of $\lambda$. After multiplying with $\widetilde{M}_{0}^{-1}$ and taking the trace, we get

$$
\operatorname{Tr} \widetilde{\mathcal{L}}_{0}=\sum_{i=0}^{z_{2}+1} \lambda^{i} \widetilde{I}_{i},
$$

where

$$
\begin{gather*}
\tilde{I}_{r}=\left(\alpha_{1} \Psi_{r-1}^{1, z_{2}-2}+\left(\alpha_{2} v_{0}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{1}}\right) \Psi_{r-1}^{1, z_{2}-3}+\left(\alpha_{3} v_{z_{2}}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{z_{2}-1}}\right) \Psi_{r-1}^{2, z_{2}-2}-\alpha_{1} v_{0} v_{z_{2}} \Psi_{r-2}^{2, z_{2}-3}\right. \\
\left.-\left(\frac{\alpha_{2} v_{0}}{v_{z_{2}-1}}+\frac{\alpha_{3} v_{z_{2}}}{v_{1}}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{1} v_{z_{2}-1}}+\alpha_{1}\right) \Psi_{r}^{1, z_{2}-2}\right) \prod_{i=0}^{z_{2}} v_{i}^{-1} \tag{48}
\end{gather*}
$$

with

$$
\begin{equation*}
\Psi_{r}^{a, b}=-v_{a-1} v_{a} \Phi_{r}^{a, b}\left\{\frac{v_{i-1} v_{i+2}}{\left(v_{i-1}+v_{i+1}\right)\left(v_{i}+v_{i+2}\right)}\right\} \prod_{i=a}^{b+1} \frac{v_{i}\left(v_{i-1}+v_{i+1}\right)}{v_{i-1}} \tag{49}
\end{equation*}
$$

Note that if $r>\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor$, then $\tilde{I}_{r}=0$. It is clear by the staircase method that $\widetilde{I}_{r}$ is an integral of the corresponding mKdV map. However, using properties of $\Psi$ one can also show that $\widetilde{I}_{r}$ is invariant under the mKdV map. By doing so, we obtain an integrating factor [6] which we do not get from the staircase.

Proposition 9. For $0 \leqslant r \leqslant\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor, \widetilde{I}_{r}$ is an integral of the $m K d V$ map with the integrating factor

$$
\Lambda_{r}=\frac{1}{v_{0} v_{1} v_{z_{2}} v_{z_{2}+1}}\left(\Psi_{r}^{1, z_{2}-1}+v_{1} v_{z_{2}} \Psi_{r-1}^{2, z_{2}-2}-v_{1} \Psi_{r}^{2, z_{2}-1}-v_{z_{2}} \Psi_{r}^{1, z_{2}-2}\right) \prod_{i=1}^{z_{2}} v_{i}^{-1}
$$

where $\Psi$ is given by (49).
The proof of this proposition is given in appendix B.
4.4. General closed-form expressions for integrals of all equations in the ABS list, except $Q_{4}$

In this section, we give similar results as we did for the mKdV equation for almost all equations in the ABS list. We present a general formula for closed-form expressions for integrals of all equations whose reduced Lax pairs can be written in form (47). Then, we write the reduced Lax matrices of ABS equations with the exception of $Q_{4}$ in this form, so that we can apply the general expressions to obtain integrals.
4.4.1. General closed-form expressions for integrals. Assume that the reduced Lax matrices are written in form (47), with $\breve{\lambda}=g \lambda+h$. We now expand the trace of the monodromy matrix $\mathcal{L}_{0}$ in terms of powers of $\lambda$.

Theorem 10. Let $\mathcal{L}_{0}$ be given by (6), where $L, M^{-1}$ are matrices which can be written in form (47). Then, we have

$$
\operatorname{Tr}\left(\mathcal{L}_{0}\right)=\sum_{i=0}^{z_{2}+1} \lambda^{r} I_{r}
$$

where $I_{r}$ is expressed in terms of $\Psi$ (45):

$$
\begin{align*}
I_{r}=\left(g \Psi_{r-1}^{1, z_{2}-2}\right. & +h \Psi_{r}^{1, z_{2}-2}+\breve{s}_{0}\left(\breve{a}_{0}+b_{0}\right) \Psi_{r-1}^{1, z_{2}-3}+\breve{s}_{0}\left(\breve{b}_{0}+a_{z_{2}-1}\right) \Psi_{r-1}^{2, z_{2}-2}+\breve{s}_{0} \Psi_{r-2}^{2, z_{2}-3} \\
& \left.+\breve{s}_{0}\left(\breve{a}_{0}+b_{0}\right)\left(a_{z_{2}-1}+\breve{b}_{0}\right) \Psi_{r}^{1, z_{2}-2}\right) \breve{r}_{0} \prod_{i=0}^{z_{2}-1} r_{i} . \tag{50}
\end{align*}
$$

Proof. We use lemma 8 to expand the monodromy matrix. We have
$\mathcal{L}_{0}=\left(\breve{s}_{0} \breve{A}_{0}^{0}+(g \lambda+h) H\right)\left(\sum_{r=0}^{z_{2}} \lambda^{r} X_{r}^{0, z_{2}-1}\right) \breve{r}_{0} \prod_{i=0}^{z_{2}-1} r_{i}=\left(\sum_{r=0}^{z_{2}+1} \lambda^{r} W_{r}\right) \breve{r}_{0} \prod_{i=0}^{z_{2}-1} r_{i}$,
where

$$
W_{r}=\left(\breve{s}_{0} \breve{A}_{0}^{0}+h H\right) X_{r}^{0, z_{2}-1}+g H X_{r-1}^{0, z_{2}-1} .
$$

Using properties of $H$ and $A$, we have

$$
\begin{aligned}
\operatorname{Tr}\left(H X_{r}^{0, z_{2}-1}\right) & =\Psi_{r}^{1, z_{2}-2} \\
\operatorname{Tr}\left(H X_{r-1}^{0, z_{2}-1}\right) & =\Psi_{r-1}^{1, z_{2}-2} \\
\operatorname{Tr}\left(\breve{A}_{0}^{0} X_{r}^{0, z_{2}-1}\right) & =\left(\breve{a}_{0}+b_{0}\right) \Psi_{r-1}^{1, z_{2}-3}+\left(\breve{b}_{0}+a_{z_{2}-1}\right) \Psi_{r-1}^{2, z_{2}-2}+\Psi_{r-2}^{2, z_{2}-3} \\
& +\left(\breve{a}_{0}+b_{0}\right)\left(a_{z_{2}-1}+\breve{b}_{0}\right) \Psi_{r}^{1, z_{2}-2},
\end{aligned}
$$

which we use to evaluate the trace of (51).
Now from this theorem, if $I_{r}$ do not depend on $\lambda$, then from the staircase method we have that $I_{r}$ is invariant. Hence, we have the following corollary.

Corollary 11. Suppose that $a_{i-1}+b_{i}, \breve{a}_{0}+b_{0}, a_{z_{2}-1}+\breve{b}_{0}, r_{i}, s_{i}, \breve{r}_{i}, \breve{s}_{i}, g$ and $h$ do not depend on the spectral parameter $k$. Then $I_{r}$ given by (50) is an integral.

Here, we give a direct proof that $I_{r}$ is an integral of the equation derived from the Lax equation $L_{0} M_{0}^{-1}=M_{1}^{-1} L_{z_{2}}$.

Proof. Since $L_{0} M_{0}^{-1}=M_{1}^{-1} L_{z_{2}}$, we have
$r_{0} \breve{r}_{0}\left(s_{0} A_{0}^{0}+\lambda H\right)\left(\breve{s}_{0} \breve{A}_{0}^{0}+(g \lambda+h) H\right)=\breve{r}_{1} r_{z_{2}}\left(\breve{s}_{1} \breve{A}_{1}^{1}+(g \lambda+h) H\right)\left(s_{z_{2}} A_{z_{2}}^{z_{2}}+\lambda H\right)$.
If $a_{i}, \breve{a}_{i}, b_{i}, \breve{b}_{i}$ do not depend on $k$ (the cases $H_{1}$ and $H_{3}$ ), equating coefficients of $\lambda$ on both sides we obtain $E_{i}=0, i=1,2, \ldots, 6$, with

$$
\begin{aligned}
& E_{1}:=r_{0} \breve{r}_{0} \breve{s}_{0}-\breve{r}_{1} r_{z_{2}} g s_{z_{2}}, \\
& E_{2}:=r_{0} \breve{r}_{0} g s_{0}-\breve{r}_{1} r_{z_{2}} \breve{s}_{1}, \\
& E_{3}:=r_{0} \breve{r}_{0}\left(\breve{s}_{0} \breve{b}_{0}+g s_{0} a_{0}\right)-\breve{r}_{1} r_{z_{2}}\left(\breve{s}_{1} \breve{a}_{1}+g s_{z_{2}} b_{z_{2}}\right), \\
& E_{4}:=\breve{r}_{0} r_{0} s_{0} \breve{s}_{0}\left(b_{0}+\breve{a}_{0}\right)-r_{z_{2}} \breve{r}_{1} \breve{s}_{1} s_{z_{2}}\left(a_{z_{2}}+\breve{b}_{1}\right), \\
& E_{5}:=r_{0} \breve{r}_{0} s_{0}\left(\breve{s}_{0}\left(b_{0}+\breve{a}_{0}\right) \breve{b}_{0}+h\right)-\breve{r}_{1} r_{z_{2}} \breve{s}_{1} s_{z_{2}} b_{z_{2}}\left(a_{z_{2}}+\breve{b}_{1}\right), \\
& E_{6}:=\breve{r}_{0} r_{0} s_{0} a_{0} \breve{s}_{0}\left(b_{0}+\breve{a}_{0}\right)-\breve{r}_{1} r_{z_{2}} s_{z_{2}}\left(\breve{s}_{1}\left(a_{z_{2}}+\breve{b}_{1}\right) \breve{a}_{1}+h\right) .
\end{aligned}
$$

For the case where $a_{i}, b_{i}, \breve{a}_{i}, \breve{b}_{i}$ depend on $k$, we were able to check that the identities $E_{i}=0$ hold for the cases $Q_{1}$ and $Q_{3}^{0}$. For the rest of the equations, calculations get complicated as we have to deal with square roots.

Using the fourth and fifth identities, we have $h=\breve{s}_{0}\left(b_{0}+\breve{a}_{0}\right)\left(b_{z_{2}}-b_{0}\right)$. Similarly, using the fourth and sixth identities, we have $h=\breve{s}_{1}\left(a_{0}-\breve{a}_{1}\right)\left(a_{z_{2}}+\breve{b}_{1}\right)$. We have

$$
\begin{gathered}
S\left(I_{r}\right)=\left(g \Psi_{r-1}^{2, z_{2}-1}+h \Psi_{r}^{2, z_{2}-1}+\breve{s}_{1}\left(\breve{a}_{1}+b_{1}\right) \Psi_{r-1}^{2, z_{2}-2}+\breve{s}_{1}\left(\breve{b}_{1}+a_{z_{2}}\right) \Psi_{r-1}^{3, z_{2}-1}\right. \\
\left.+\breve{s}_{1} \Psi_{r-2}^{3, z_{2}-2}+s_{1}\left(\breve{a}_{1}+b_{1}\right)\left(a_{z_{2}}+\breve{b}_{1}\right) \Psi_{r}^{2, z_{2}-1}\right) \breve{r}_{1} \prod_{i=1}^{z_{2}} r_{i} .
\end{gathered}
$$

Now we write $S\left(I_{r}\right)-I_{r}=(A+B) \prod_{i=1}^{z_{2}-1} r_{i}$, where

$$
\begin{aligned}
A:=\breve{r}_{1} r_{z_{2}}(g & \left(\Psi_{r-1}^{2, z_{2}-1}+\breve{s}_{1}\left(\breve{a}_{1}+b_{1}\right) \Psi_{r-1}^{2, z_{2}-2}+\breve{s}_{1} \Psi_{r-2}^{3, z_{2}-2}\right) \\
& \quad-r_{0} \breve{r}_{0}\left(g \Psi_{r-1}^{1, z_{2}-2}+\breve{s}_{0}\left(\breve{b}_{0}+a_{z_{2}-1}\right) \Psi_{r-1}^{2, z_{2}-2}+\breve{s}_{0} \Psi_{r-2}^{2, z_{2}-3}\right) \\
B:=\breve{r}_{1} r_{z_{2}}((h & \left.\left.+\breve{s}_{1}\left(\breve{a}_{1}+b_{1}\right)\left(a_{z_{2}}+\breve{b}_{1}\right)\right) \Psi_{r}^{2, z_{2}-1}+\breve{s}_{1}\left(\breve{b}_{1}+a_{z_{2}}\right) \Psi_{r-1}^{3, z_{2}-1}\right) \\
& \quad-\breve{r}_{0} r_{0}\left(\left(h+\breve{s}_{0}\left(\breve{a}_{0}+b_{0}\right)\left(a_{z_{2}-1}+\breve{b}_{0}\right)\right) \Psi_{r}^{1, z_{2}-2}+\breve{s}_{0}\left(\breve{a}_{0}+b_{0}\right) \Psi_{r-1}^{1, z_{2}-3}\right) .
\end{aligned}
$$

From the properties of $\Phi(41)$ and (42), we obtain the following properties of $\Psi$ :

$$
\begin{align*}
& \Psi_{r}^{n, m}=s_{m+1}\left(a_{m}+b_{m+1}\right) \Psi_{r}^{n, m-1}+s_{m+1} \Psi_{r-1}^{n, m-2},  \tag{52}\\
& \Psi_{r}^{n, m}=s_{n-1}\left(a_{n-1}+b_{n}\right) \Psi_{r}^{n+1, m}+s_{n-1} \Psi_{r-1}^{n+2, m}, \tag{53}
\end{align*}
$$

where $n \leqslant m$ and $0 \leqslant r$. Using these properties (52) and (53), we get

$$
\begin{aligned}
& A=\left(\breve{r}_{1} r_{z_{2}}\left(g s_{z_{2}}\left(a_{z_{2}-1}+b_{z_{2}}\right)+\breve{s}_{1}\left(\breve{a}_{1}+b_{1}\right)\right)-\breve{r}_{0} r_{0}\left(g s_{0}\left(a_{0}+b_{1}\right)+\breve{s}_{0}\left(\breve{b}_{0}+a_{z_{2}-1}\right)\right)\right) \\
& \times \Psi_{r-1}^{2, z_{2}-2}+\left(\breve{r}_{1} r_{z_{2}} g s_{z_{2}}-r_{0} \breve{r}_{0} \breve{s}_{0}\right) \Psi_{r-2}^{2, z_{2}-3}+\left(\breve{r}_{1} r_{z_{2}} \breve{s}_{1}-r_{0} \breve{r}_{0} g s_{0}\right) \Psi_{r-2}^{3, z_{2}-2} \\
&=\left(a_{z_{2}-1} \Psi_{r-1}^{2, z_{2}-2}+\Psi_{r-2}^{2, z_{2}-3}\right)\left(\breve{r}_{1} r_{z_{2}} g s_{z_{2}}-r_{0} \breve{r}_{0} \breve{s}_{0}\right)+\left(b_{1} \Psi_{r-1}^{2, z_{2}-2}+\Psi_{r-2}^{3, z_{2}-2}\right) . \\
& \times\left(\breve{r}_{1} r_{z_{2}} \breve{s}_{1}-\breve{r}_{0} r_{0} g s_{0}\right)+\left(\breve{r}_{1} r_{z_{2}}\left(g s_{z_{2}} a_{z_{2}}+\breve{s}_{1} \breve{a}_{1}\right)-r_{0} \breve{r}_{0}\left(g s_{0} a_{0}+\breve{s}_{0} \breve{b}_{0}\right)\right) \Psi_{r-1}^{2, z_{2}-2} \\
&=-\left(a_{z_{2}-1} \Psi_{r-1}^{2, z_{2}-2}+\Psi_{r-2}^{2, z_{2}-3}\right) E_{1}-\left(b_{1} \Psi_{r-1}^{2, z_{2}-2}+\Psi_{r-2}^{3, z_{2}-2}\right) E_{2}-\Psi_{r-1}^{2, z_{2}-2} E_{3} \\
&= 0 .
\end{aligned}
$$

We also have

$$
\begin{aligned}
B=\breve{r}_{1} r_{z_{2}}(h+ & \left.\breve{s}_{1}\left(a_{z_{2}}+\breve{b}_{1}\right)\left(a_{0}-\breve{a}_{0}\right)\right) \Psi_{r}^{2, z_{2}-1}-\breve{r}_{0} r_{0}\left(h+s_{0}\left(\breve{a}_{0}+b_{0}\right)\left(\breve{b}_{0}-b_{z_{2}}\right)\right) \Psi_{r}^{1, z_{2}-2} \\
& -\frac{E_{4}}{s_{0} s_{z_{2}}} \Psi_{r}^{1, z_{2}-1} \\
= & 0 .
\end{aligned}
$$

This proves our statement.
From this proof, one can derive an integrating factor by dividing $E_{1}, E_{2}, E_{3}, E_{4}$ and $h+\breve{s}_{1}\left(a_{z_{2}}+\breve{b}_{1}\right)\left(a_{0}-\breve{a}_{0}\right), h+s_{0}\left(\breve{a}_{0}+b_{0}\right)\left(\breve{b}_{0}-b_{z_{2}}\right)$ by the corresponding equation.
4.4.2. Application to equations in the ABS list In table 1 , we give a table for writing the reduced Lax matrices for equations $H_{1}, H_{2}, H_{3}$ and $Q_{1}, Q_{2}, Q_{3}$ (see [1]) in form (47). All the reduced Lax pairs given satisfy the conditions in corollary 11 , so that we obtain closed-form expressions for the integrals from formula (50).

Table 1. Reduced Lax pairs for equations in the ABS list.

| E | $\lambda$ | $g$ | $a_{i}$ | $b_{i}$ | $r_{i}$ | $s_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $h$ | $\breve{a}_{i}$ | $\breve{b}_{i}$ | $\breve{r}_{i}$ | $\breve{s}_{i}$ |
| $\bar{H}_{1}$ | $p-k$ | 1 | $v_{i}$ | $-v_{i+1}$ | 1 | 1 |
|  |  | $q-p$ | $v_{i+z_{2}}$ | $-v_{i}$ | 1 | 1 |
| $\mathrm{H}_{2}$ | $p-k$ | 1 | $p-k+v_{i}$ | $-\left(p-k+v_{i+1}\right)$ | $2 \sqrt{p+v_{i}+v_{i+1}}$ | 2/r ${ }_{i}^{2}$ |
|  |  | $q-p$ | $q-k+v_{i+z_{2}}$ | $-\left(q-k+v_{i}\right)$ | $2 \sqrt{q+v_{i}+v_{i+z_{2}}}$ | $2 / \breve{r}_{i}^{2}$ |
| $\mathrm{H}_{3}$ | $\frac{k^{2}-p^{2}}{k^{2}}$ | $\frac{q^{2}}{p^{2}}$ | $\frac{v_{i}}{p}$ | $\frac{-v_{i+1}}{p}$ | $\frac{\sqrt{\delta p+v_{i} v_{i+1}}}{p}$ | $1 / r_{i}^{2}$ |
|  |  | $\frac{p^{2}-q^{2}}{p^{2}}$ | $\frac{v_{i+z_{2}}}{p}$ | $\frac{-v_{i}}{q}$ | $\frac{\sqrt{\delta q+v_{i} v_{i+z_{2}}}}{q}$ | $1 / \breve{r}_{i}^{2}$ |
| $Q_{1}$ | $\frac{p-k}{k}$ | $\frac{q}{p}$ | $\frac{p v_{i+1} / k-v_{i+1}+v_{i}}{p}$ | $-\frac{p v_{i} / k-v_{i}+v_{i+1}}{p}$ | $\frac{v_{i}-v_{i+1}-\delta}{p}$ | $\frac{p^{2}}{\left(v_{i}-v_{i+1}+p \delta\right)\left(v_{i}-v_{i+1}-p \delta\right)}$ |
|  |  | $\frac{q-p}{p}$ | $\frac{q v_{i} / k-v_{i}+v_{i+z_{2}}}{q}$ | $-\frac{q v_{i+z_{2}} / k-v_{i+z_{2}}+v_{i}}{q}$ | $\frac{v_{i}-v_{i+z_{2}}+\delta q}{q}$ | $\frac{q^{2}}{\left(v_{i}-v_{i+z_{2}}-\delta q\right)\left(v_{i}-v_{i+z_{2}}+\delta q\right)}$ |
| $Q_{2}$ | $\frac{p-k}{k}$ | $\frac{q}{p}$ | $\frac{(k-p)\left(\delta p k-v_{i+1}\right)+k v_{i}}{k p}$ | $-\frac{(k-p)\left(\delta p k-v_{i}\right)+k v_{i+1}}{k p}$ | $\frac{\sqrt{\delta p^{2}\left(\delta p^{2}-2 v_{i}-2 v_{i+1}\right)+\left(v_{i}-v_{i+1}\right)^{2}}}{p}$ | $1 / r_{i}^{2}$ |
|  |  | $\frac{q-p}{p}$ | $\frac{(k-q)\left(\delta q k-v_{i}\right)+k v_{i+z_{2}}}{k q}$ | $-\frac{(k-q)\left(\delta q k-v_{i+z_{2}}\right)+k v_{i}}{k q}$ | $\frac{\sqrt{\delta q^{2}\left(\delta q^{2}-2 v_{i}-2 v_{i+z_{2}}\right)+\left(v_{i}-v_{i+z_{2}}\right)^{2}}}{q}$ | $1 / \breve{r}_{i}^{2}$ |
| $Q_{3}^{0}$ | $\frac{k^{2}-p^{2}}{k^{2}-1}$ | $\frac{q^{2}-1}{p^{2}-1}$ | $\frac{\left(p^{2}-k^{2}\right) v_{i+1}+p\left(k^{2}-1\right) v_{i}}{\left(k^{2}-1\right)\left(p^{2}-1\right)}$ | $-\frac{\left(p^{2}-k^{2}\right) v_{i}+p\left(k^{2}-1\right) v_{i+1}}{\left(k^{2}-1\right)\left(p^{2}-1\right)}$ | $\frac{p v_{i+1}-v_{i}}{p^{2}-1}$ | $\frac{\left(p^{2}-1\right)^{2}}{\left(p v_{i+1}-v_{i}\right)\left(p v_{i}-v_{i+1}\right)}$ |
|  |  | $\frac{p^{2}-q^{2}}{p^{-1}}$ | $\frac{\left(q^{2}-k^{2}\right) v_{i}+q\left(k^{2}-1\right) v_{i+z_{2}}}{\left(k^{2}-1\right)\left(q^{2}-1\right)}$ | $-\frac{\left(q^{2}-k^{2}\right) v_{i+2}+q\left(k^{2}-1\right) v_{i}}{\left(k^{2}-1\right)\left(q^{2}-1\right)}$ | $\frac{q u_{i}-v_{i+z_{2}}}{q^{2}-1}$ | $\frac{\left(q^{2}-1\right)^{2}}{\left(q v_{i+z_{2}}-v_{i}\right)\left(q v_{i}-v_{i+z_{2}}\right)}$ |
| $Q_{3}$ | $\frac{p^{2}-k^{2}}{k^{2}-1}$ | $\frac{q^{2}-1}{p^{2}-1}$ | $\frac{p\left(k^{2}-1\right) v_{i}+\left(p^{2}-k^{2}\right) v_{i+1}}{\left(k^{2}-1\right)\left(p^{2}-1\right)}$ | $-\frac{p\left(k^{2}-1\right) v_{i+1}+\left(p^{2}-k^{2}\right) v_{i}}{\left(k^{2}-1\right)\left(p^{2}-1\right)}$ | $\frac{\sqrt{\delta^{2}\left(1-p^{2}\right)^{2}+4 p v_{i} v_{i+1}\left(1-p^{2}\right)+4 p^{2}\left(v_{i}^{2}-v_{i+1}^{2}\right)}}{\left(p^{2}-1\right) 4 p}$ | $\frac{1}{4 p r_{i}^{2}}$ |
|  |  | $\frac{q^{2}-p^{2}}{p^{-1}}$ | $\frac{\left(q^{2}-k^{2}\right) v_{i}+q\left(k^{2}-1\right) v_{i+z_{2}}}{\left(k^{2}-1\right)\left(q^{2}-1\right)}$ | $-\frac{\left(q^{2}-k^{2}\right) v_{i+2}+q\left(k^{2}-1\right) v_{i}}{\left(k^{2}-1\right)\left(q^{2}-1\right)}$ | $\frac{\sqrt{\delta^{2}\left(1-q^{2}\right)^{2}+4 q v_{i} v_{i+z_{2}}\left(1-q^{2}\right)+4 q^{2}\left(v_{i}^{2}-v_{i+z_{2}}^{2}\right)}}{4 q\left(q^{2}-1\right)}$ | $\frac{1}{4 q \breve{r}_{i}^{2}}$ |

## 5. Discussion

### 5.1. Comparing the two sets of integrals of the $m K d V$ equation

We have obtained two sets of integrals for the mKdV equation in equations (38) and (48), which are expressed in terms of the multi-sums of products $\Theta$ and $\Psi$, respectively. This is because we can expand the trace of the monodromy matrix in powers of either $k$ or $\lambda=1-k^{2}$. Therefore, we have

$$
\operatorname{Tr}\left(\mathcal{L}_{0}\right)=\sum_{i=0}^{\left\lfloor\left(\left(z_{2}+1\right) / 2\right)\right\rfloor} k^{2 i} I_{i}=\sum_{i=0}^{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor}\left(1-k^{2}\right)^{i} \widetilde{I}_{i}
$$

Equating the coefficient of $k^{2 r}$, we have

$$
I_{r}=\sum_{i=r}^{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor}(-1)^{r}\binom{i}{i-r} \widetilde{I}_{i} .
$$

In particular, we have

$$
I_{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor}=(-1)^{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor} \tilde{I}_{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor}
$$

and

$$
I_{0}=\alpha_{2}+\alpha_{3}=\sum_{i=0}^{\left\lfloor\left(z_{2}+1\right) / 2\right\rfloor} \widetilde{I}_{i}
$$

The latter equation means that the set of non-constant integrals $\left\{\tilde{I}_{r}\right\}$ is not functionally independent. Explicitly taking $z_{2}=3$, we have
$I_{0}=\alpha_{2}+\alpha_{3}$,
$I_{1}=\alpha_{1}\left(\frac{v_{0}}{v_{2}}+\frac{v_{0} v_{3}}{v_{1} v_{2}}+\frac{v_{3}}{v_{1}}+\frac{v_{2}}{v_{0}}+\frac{v_{1} v_{2}}{v_{0} v_{3}}+\frac{v_{1}}{v_{3}}\right)+\alpha_{2}\left(\frac{v_{1}}{v_{3}}+\frac{v_{0} v_{1}}{v_{2} v_{3}}+\frac{v_{0}}{v_{2}}\right)+\alpha_{3}\left(\frac{v_{3}}{v_{1}}+\frac{v_{2} v_{3}}{v_{0} v_{1}}+\frac{v_{2}}{v_{0}}\right)$,
$I_{2}=2 \alpha_{1}$
and
$\widetilde{I}_{0}=\alpha_{1}\left(2+\frac{v_{0}}{v_{2}}+\frac{v_{0} v_{3}}{v_{1} v_{2}}+\frac{v_{3}}{v_{1}}+\frac{v_{2}}{v_{0}}+\frac{v_{1} v_{2}}{v_{0} v_{3}}+\frac{v_{1}}{v_{3}}\right)+\alpha_{2}\left(1+\frac{v_{1}}{v_{3}}+\frac{v_{0} v_{1}}{v_{2} v_{3}}+\frac{v_{0}}{v_{2}}\right)$

$$
+\alpha_{3}\left(1+\frac{v_{3}}{v_{1}}+\frac{v_{2} v_{3}}{v_{0} v_{1}}+\frac{v_{2}}{v_{0}}\right),
$$

$\widetilde{I}_{1}=-\alpha_{1}\left(4+\frac{v_{0}}{v_{2}}+\frac{v_{0} v_{3}}{v_{1} v_{2}}+\frac{v_{3}}{v_{1}}+\frac{v_{2}}{v_{0}}+\frac{v_{1} v_{2}}{v_{0} v_{3}}+\frac{v_{1}}{v_{3}}\right)-\alpha_{2}\left(\frac{v_{1}}{v_{3}}+\frac{v_{0} v_{1}}{v_{2} v_{3}}+\frac{v_{0}}{v_{2}}\right)$

$$
-\alpha_{3}\left(\frac{v_{3}}{v_{1}}+\frac{v_{2} v_{3}}{v_{0} v_{1}}+\frac{v_{2}}{v_{0}}\right),
$$

$\widetilde{I}_{2}=2 \alpha_{1}$.
It seems that the set of non-constant integrals $I_{r}$ expressed in $\Theta$ is simpler and shorter than the integrals $\widetilde{I}_{r}$ expressed in $\Psi$. However, it is interesting to know that with our Maple program, it took much more time to calculate the integrals in terms of $\Theta$ than in terms of $\Psi$.

Similarly, for the sine-Gordon mapping the set of non-constant integrals expressed in terms of $\Psi$ is not functionally independent and also longer than that expressed in terms of $\Theta$.

### 5.2. Future work

We have presented a tool to obtain closed-form expressions for integrals in terms of the multisums of products $\Theta$ and $\Psi$. This is a first step to prove the integrability of a discrete map in the Liouville-Arnold sense [10, 12] (a map has sufficiently many functionally independent integrals in involution). The recursive formulae for the multi-sums of products make it possible for us to prove functional independence and involutivity which we hope to publish elsewhere [13, 14].

We have given closed-form expressions for integrals of all equations in the ABS list but $Q_{4}$. It would be worth studying this exceptional case, as $Q_{4}$ is the most general equation in the ABS list.

In this paper, we have considered $\left(1, z_{2}\right)$ traveling wave reductions. It would be interesting to study more general traveling wave reductions (cf [8, 11]).

Another direction of interest is studying more general equations, and systems of equations, which are not necessarily defined on elementary squares (cf [4, 5]).

## Acknowledgments

This research has been funded by the Australian Research Council through the Centre of Excellence for Mathematics and Statistics of Complex Systems. Dinh T Tran acknowledges the support of two scholarships, one from La Trobe University and the other from the Endeavour IPRS program. The authors also thank Professor Willy Hereman for a very useful collaboration on the topic of Lax pairs for equations on the ABS list.

## Appendix A. Proving lemma 4

Here we give a proof of lemma 4.
Proof. We write $L_{i}=k J+Y_{i}$ as in (14). So we have

$$
Y_{i+k} Y_{i+k-1} \ldots Y_{i}=\left(\begin{array}{cc}
\frac{v_{i}}{v_{i+k+1}} & 0 \\
0 & \frac{v_{i+k+1}}{v_{i}}
\end{array}\right) .
$$

Using the Vieta formula (9b) and the above formula, we obtain

$$
\begin{gathered}
\widetilde{Z}_{r}^{a, b-1}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b-1} Y_{b-1} \ldots Y_{i_{r}+1} J Y_{i_{r}-1} \ldots Y_{i_{r-1}+1} J \ldots Y_{i_{1}+1} J Y_{i_{1}-1} \ldots Y_{a} \\
=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b-1} \\
\left(\begin{array}{cc}
\frac{v_{i_{r}+1}}{v_{b}} & 0 \\
0 & \frac{v_{b}}{v_{i_{i_{r}+1}}}
\end{array}\right) J\left(\begin{array}{cc}
\frac{v_{i_{r-1}+1}}{v_{i_{r}}} & 0 \\
0 & \frac{v_{i_{r}}}{v_{i_{r-1}+1}}
\end{array}\right) J \ldots\left(\begin{array}{cc}
\frac{v_{i_{1}+1}}{v_{i_{2}}} & 0 \\
0 & \frac{v_{i_{2}}}{v_{i_{1}+1}}
\end{array}\right) J\left(\begin{array}{cc}
\frac{v_{a}}{v_{i_{1}}} & 0 \\
0 & \frac{v_{i_{1}}}{v_{a}}
\end{array}\right) .
\end{gathered}
$$

If $r$ is even and using the properties $J Y=Y^{-1} J$ and $J^{2}=I$, then we have

$$
\begin{aligned}
& \widetilde{Z}_{r}^{a, b-1}=\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b-1} \\
& \left(\begin{array}{cc}
\frac{v_{i r+1}}{v_{b}} & 0 \\
0 & \frac{v_{b}}{v_{i_{r+1}}}
\end{array}\right)\left(\begin{array}{cc}
\frac{v_{i_{r}}}{v_{i_{r-1}+1}} & 0 \\
0 & \frac{v_{i_{r-1}+1}}{v_{i_{r}}}
\end{array}\right) \ldots\left(\begin{array}{cc}
\frac{v_{i_{2}}}{v_{i_{1}+1}} & 0 \\
0 & \frac{v_{i_{1}+1}}{v_{i_{2}}}
\end{array}\right)\left(\begin{array}{cc}
\frac{v_{a}}{v_{i_{1}}} & 0 \\
0 & \frac{v_{11}}{v_{a}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{a \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant b-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\frac{v_{a}}{v_{b}} \Theta_{r, 0}^{a, b-1} & 0 \\
0 & \frac{v_{b}}{v_{a}} \Theta_{r, 1}^{a, b-1}
\end{array}\right) .
\end{aligned}
$$

Similarly, if $r$ is odd, then we have

$$
\begin{aligned}
& \widetilde{Z}_{r}^{a, b-1}= \\
& \begin{aligned}
J\left(\begin{array}{cc}
\frac{v_{b}}{v_{i r+1}} & 0 \\
0 & \frac{v_{i_{i r+1}}}{v_{b}}
\end{array}\right)\left(\begin{array}{cc}
\frac{v_{r-1}}{v_{i-1}} & 0 \\
0 & \frac{v_{i_{r}}}{v_{i_{r-1}+1}}
\end{array}\right) \cdots\left(\begin{array}{cc}
\frac{v_{i_{2}}}{v_{i_{1}+1}} & 0 \\
0 & \frac{v_{i_{1}+1}}{v_{i_{2}}}
\end{array}\right)\left(\begin{array}{cc}
\frac{v_{a}}{v_{i_{1}}} & 0 \\
0 & \frac{v_{i_{1}}}{v_{a}}
\end{array}\right) \\
\quad=J\left(\begin{array}{cc}
v_{a} v_{b} \Theta_{r, 0}^{a, b-1} & 0 \\
0 & \frac{1}{v_{a} v_{b}} \Theta_{r, 1}^{a, b-1}
\end{array}\right) \\
\quad=\left(\begin{array}{cc}
0 & \frac{1}{v_{a} v_{b}} \Theta_{r, 1}^{a, b-1} \\
v_{a} v_{b} \Theta_{r, 0}^{a, b-1} & 0
\end{array}\right) .
\end{aligned} .
\end{aligned}
$$

## Appendix B. Direct proof of invariance of integrals of the $\mathbf{m K d V}$ equation in terms of $\Psi$ (proposition 9)

Here we give a proof of proposition 9.
Proof. Applying a shift operator on the integral $\widetilde{I}_{r}$, we obtain

$$
\begin{aligned}
& S\left(\widetilde{I}_{r}\right)=\left(\alpha_{1} \Psi_{r-1}^{2, z_{2}-1}+\left(\alpha_{2} v_{1}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{2}}\right) \Psi_{r-1}^{2, z_{2}-2}+\left(\alpha_{3} v_{z_{2}+1}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{z_{2}}}\right) \Psi_{r-1}^{3, z_{2}-1}\right. \\
&\left.\quad-\alpha_{1} v_{1} v_{z_{2}+1} \Psi_{r-2}^{3, z_{2}-2}-\left(\frac{\alpha_{2} v_{1}}{v_{z_{2}}}+\frac{\alpha_{3} v_{z_{2}+1}}{v_{2}}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{2} v_{z_{2}}}+\alpha_{1}\right) \Psi_{r}^{2, z_{2}-1}\right) \prod_{i=1}^{z_{2}+1} v_{i}^{-1}
\end{aligned}
$$

Now we write $S\left(\tilde{I}_{r}\right)-\tilde{I}_{r}=(A+B) \prod_{i=1}^{z_{2}} v_{i}^{-1}$, where

$$
\begin{aligned}
& A=\left(\alpha_{1} \Psi_{r-1}^{2, z_{2}-1}+\left(\alpha_{2} v_{1}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{2}}\right) \Psi_{r-1}^{2, z_{2}-2}-\alpha_{1} v_{1} v_{z_{2}+1} \Psi_{r-2}^{3, z_{2}-2}\right) v_{z_{2}+1}^{-1} \\
&-\left(\alpha_{1} \Psi_{r-1}^{1, z_{2}-2}+\left(\alpha_{3} v_{z_{2}}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{z_{2}-1}}\right) \Psi_{r-1}^{2, z_{2}-2}-\alpha_{1} v_{0} v_{z_{2}} \Psi_{r-2}^{2, z_{2}-3}\right) v_{0}^{-1} \\
& B=\left(\left(\alpha_{3} v_{z_{2}+1}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{z_{2}}}\right) \Psi_{r-1}^{3, z_{2}-1}-\left(\frac{\alpha_{2} v_{1}}{v_{z_{2}}}+\frac{\alpha_{3} v_{z_{2}+1}}{v_{2}}+\frac{\alpha_{1} v_{1} v_{z_{2}+1}}{v_{2} v_{z_{2}}}+\alpha_{1}\right) \Psi_{r}^{2, z_{2}-1}\right) v_{z_{2}+1}^{-1} \\
&-\left(\left(\alpha_{2} v_{0}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{1}}\right) \Psi_{r-1}^{1, z_{2}-3}-\left(\frac{\alpha_{2} v_{0}}{v_{z_{2}-1}}+\frac{\alpha_{3} v_{z_{2}}}{v_{1}}+\frac{\alpha_{1} v_{0} v_{z_{2}}}{v_{1} v_{z_{2}-1}}+\alpha_{1}\right) \Psi_{r}^{1, z_{2}-2}\right) v_{0}^{-1}
\end{aligned}
$$

Using properties (52) and (53), we have

$$
\begin{aligned}
& \Psi_{r}^{2, z_{2}-1}=v_{z_{2}} v_{z_{2}+1}\left(\frac{1}{v_{z_{2}-1}}+\frac{1}{v_{z_{2}+1}}\right) \Psi_{r-1}^{2, z_{2}-2}-v_{z_{2}} v_{z_{2}+1} \Psi_{r-2}^{2, z_{2}-3} \\
& \Psi_{r-1}^{1, z_{2}-2}=v_{0} v_{1}\left(\frac{1}{v_{0}}+\frac{1}{v_{2}}\right) \Psi_{r-1}^{2, z_{2}-2}-v_{0} v_{1} \Psi_{r-2}^{3, z_{2}-2} .
\end{aligned}
$$

Substituting these formulae into $A$, we obtain

$$
A=\frac{\Psi_{r-1}^{2, z_{2}-2}}{v_{0} v_{z_{2}+1}} \cdot \mathcal{F}_{\mathrm{mKdV}}
$$

Applying the properties (52) and (53), we have

$$
\begin{aligned}
\Psi_{r}^{3, z_{2}-1} & =\left(\frac{1}{v_{0}}+\frac{1}{v_{2}}\right) \Psi_{r}^{2, z_{2}-1}-\frac{\Psi_{r}^{1, z_{2}-1}}{v_{0} v_{1}} \\
\Psi_{r-1}^{1, z_{2}-3} & =\left(\frac{1}{v_{z_{2}-1}}+\frac{1}{v_{z_{2}+1}}\right) \Psi_{r}^{1, z_{2}-2}-\frac{\Psi_{r}^{1, z_{2}-1}}{v_{z_{2}} v_{z_{2}+1}}
\end{aligned}
$$

Substituting these formulae into $B$, we get

$$
B=\frac{1}{v_{0} v_{1} v_{z_{2}} v_{z_{2}+1}}\left(\Psi_{r}^{1, z_{2}-1}-v_{1} \Psi_{r}^{2, z_{2}-1}-v_{z_{2}} \Psi_{r}^{1, z_{2}-2}\right) \mathcal{F}_{\mathrm{mKdV}}
$$

This proves the statement.

## References

[1] Adler V, Bobenko A and Suris Y 2003 Classification of integrable equations on quad-graphs. The consistency approach Commun. Math. Phys. 233 513-43
[2] Nijhoff F N 2002 Lax pair for the Adler (lattice Krichever-Novikov) system Phys. Lett. A 297 49-58
[3] Nijhoff F N and Walker A J 2001 The discrete and continuous Painlevé hierarchy and the Garnier systems Glasgow Math. J. A 43 109-23
[4] van der Kamp P H Initial value problems for lattice equations, in preparation
[5] van der Kamp P H and Quispel G R W The staircase method, in preparation
[6] van der Kamp P H, Rojas O and Quispel G R W 2007 Closed-form expressions for integrals of sine-Gordon and MKDV maps J. Phys A.: Math. Theor. 40 12789-98
[7] Papageorgiou V G, Nijhoff F W and Capel H W 1990 Integrable mappings and nonlinear integrable lattice equations Phys. Lett. A 147 106-14
[8] Quispel G R W, Capel H W, Papageorgiou V G and Nijhoff F W 1991 Integrable mappings derived from soliton equations Physica A 173 243-66
[9] Quispel G R W, Capel H W and Roberts J A G 2005 Duality for discrete integrable systems J. Phys. A: Math. Gen. 38 3965-80
[10] Roberts J A G and Quispel G R W 2008 Symplectic structures for difference equations including integrable maps, in preparation
[11] Rojas O, van der Kamp P H and Quispel G R W Lax representations for integrable maps, in preparation
[12] Veselov A P 1991 Integrable maps Russ. Math. Surv. 46 1-51
[13] Tran D T, van der Kamp P H and Quispel G R W Involutivity of integrals of sine-Gordon, mKdV and pKdV maps, in preparation
[14] Tran D T, van der Kamp P H and Quispel G R W Functional independence of of integrals of sine-Gordon, mKdV and pKdV maps, in preparation

